题目内容

设n≥2,n∈N,(2x+
1
2
n-(3x+
1
3
n=a0+a1x+a2x2+…+anxn,将|ak|(0≤k≤n)的最小值记为Tn,则T2=0,T3=
1
23
-
1
33
,T4=0,T5=
1
25
-
1
35
,…,Tn…,其中Tn=______.
根据Tn的定义,列出Tn的前几项:
T0=0
T1=
1
6
=
1
2
-
1
3

T2=0
T3=
1
23
-
1
33

T4=0
T5=
1
25
-
1
35

T6=0

由此规律,我们可以推断:Tn=
0            n为偶数
1
2n
-
1
3n
,n为奇数

故答案:
0            n为偶数
1
2n
-
1
3n
,n为奇数
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网