题目内容
设数列{bn}满足b1=1,bn+1=2bn+1,若数列{an}满足:a1=1,且当n≥2,n∈N*时,an=bn(
+
+…+
)
(I) 求b2,b3,b4及bn;
(II)证明:
(1+
)<
(n∈N*),(注:
(1+
)=(1+
)(1+
)…(1+
)).
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
(I) 求b2,b3,b4及bn;
(II)证明:
| n |
| k=1 |
| 1 |
| ak |
| 10 |
| 3 |
| n |
| k=1 |
| 1 |
| ak |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
分析:(I)由b1=1,bn+1=2bn+1,分别令n=1和n=2,先求出b2和b3,再由bn+1=2bn+1,利用构造法求出{bn}的通项公式.
(II)先证明
=
(n≥2,n∈N*),由该结论得
(1+
)=(1+
)(1+
)…(1+
))=2(
+
+…+
+
),再由
+
+…+
+
=1+
+…+
,利用放缩法即可证明结论;
(II)先证明
| an+1 |
| an+1 |
| bn |
| bn+1 |
| n |
| k=1 |
| 1 |
| ak |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
解答:(Ⅰ)解:∵b1=1,bn+1=2bn+1,
∴b2=2×1+1=3,b3=2×3+1=7,b4=2×7+1=15,
∵bn+1=2bn+1,∴bn+1+1=2(bn+1),
所以{bn+1}为公比为2的等比数列,首项为2,
∴bn+1=(b1+1)•2n-1=2•2n-1=2n,
∴bn=2n-1.
(II)证明:a1=1,an=bn(
+
+…+
)(n≥2且n∈N*),
∴
=
+
+…+
,
=
+
+…+
+
,
∴
-
=
,∴
=
,
∴
=
(n≥2且n∈N*).
所以
(1+
)=(1+
)(1+
)…(1+
))
=
×
×
×…×
=
×
×
×…×
•an+1
=
×
×
×…×
•an+1
=
×
•an+1=2•
=2(
+
+…+
+
),
而
+
+…+
+
=1+
+…+
,
当k≥2时,
=
<
=2(
-
),
∴1+
+…+
=1+2[(
-
)+(
-
)+…+(
-
)
=1+2(
-
)<
<
.
∴b2=2×1+1=3,b3=2×3+1=7,b4=2×7+1=15,
∵bn+1=2bn+1,∴bn+1+1=2(bn+1),
所以{bn+1}为公比为2的等比数列,首项为2,
∴bn+1=(b1+1)•2n-1=2•2n-1=2n,
∴bn=2n-1.
(II)证明:a1=1,an=bn(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
∴
| an |
| bn |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| an+1 |
| bn+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
∴
| an+1 |
| bn+1 |
| an |
| bn |
| 1 |
| bn |
| an+1 |
| bn+1 |
| an+1 |
| bn |
∴
| an+1 |
| an+1 |
| bn |
| bn+1 |
所以
| n |
| k=1 |
| 1 |
| ak |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
=
| a1+1 |
| a1 |
| a2+1 |
| a2 |
| a3+1 |
| a3 |
| an+1 |
| an |
=
| a1+1 |
| a1a2 |
| a2+1 |
| a3 |
| a3+1 |
| a4 |
| an+1 |
| an+1 |
=
| 2 |
| 3 |
| b2 |
| b3 |
| b3 |
| b4 |
| bn |
| bn+1 |
=
| 2 |
| 3 |
| b2 |
| bn+1 |
| an+1 |
| bn+1 |
=2(
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
而
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn-1 |
| 1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2n-1 |
当k≥2时,
| 1 |
| 2k-1 |
| 2k-1-1 |
| (2k-1)(2k+1-1) |
| 2k+1 |
| (2k-1)(2k+1-1) |
| 1 |
| 2k-1 |
| 1 |
| 2k+1-1 |
∴1+
| 1 |
| 3 |
| 1 |
| 2n-1 |
=1+2[(
| 1 |
| 22-1 |
| 1 |
| 23-1 |
| 1 |
| 23-1 |
| 1 |
| 24-1 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1-1 |
=1+2(
| 1 |
| 3 |
| 1 |
| 2n+1-1 |
| 5 |
| 3 |
| 10 |
| 3 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目