题目内容
已知向量
=(sinθ,-2),
=(1,cosθ),且
⊥
,则sin2θ+cos2θ的值为______.
| a |
| b |
| a |
| b |
由题意可得
•
=sinθ-2cosθ=0,即tanθ=
=2,
所以sin2θ+cos2θ=
=
=
=
=1
故答案为:1
| a |
| b |
| sinθ |
| cosθ |
所以sin2θ+cos2θ=
| sin2θ+cos2θ |
| sin2θ+cos2θ |
| 2sinθcosθ+cos2θ |
| sin2θ+cos2θ |
| 2tanθ+1 |
| tan2θ+1 |
| 2×2+1 |
| 22+1 |
故答案为:1
练习册系列答案
相关题目