题目内容

从点P(4,5)向圆(x-2)2+y2=4引切线,则圆的切线方程为______.
由圆(x-2)2+y2=4,得到圆心坐标为(2,0),半径r=2,
当过P的切线斜率不存在时,直线x=4满足题意;
当过P的切线斜率存在时,设为k,
由P坐标为(4,5),可得切线方程为y-5=k(x-4),即kx-y+5-4k=0,
∴圆心到切线的距离d=r,即
|5-2k|
k2+1
=2,
解得:k=
21
20

此时切线的方程为y-5=
21
20
(x-4),即21x-20y+16=0,
综上,圆的切线方程为x=4或21x-20y+16=0.
故答案为:x=4或21x-20y+16=0
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网