题目内容
已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.
(1)求点M的轨迹方程,并说明轨迹是什么图形;
(2)记(1)中的轨迹为C,过点A(-2,3)的直线l被C所截得的线段的长为8,求直线l的方程.
(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,
得
=5.
=5,化简得x2+y2-2x-2y-23=0.
即(x-1)2+(y-1)2=25.
∴点M的轨迹方程是(x-1)2+(y-1)2=25,
所求轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,过点A(-2,3)的直线l:x=-2,
此时过点A(-2,3)的直线l被圆所截得的线段的长为:2
=8,
∴l:x=-2符合题意.
当直线l的斜率存在时,设过点A(-2,3)的直线l的方程为y-3=k(x+2),即kx-y+2k+3=0,
圆心到l的距离d=
,
由题意,得(
)2+42=52,解得k=
.∴直线l的方程为
x-y+
=0.即5x-12y+46=0.
综上,直线l的方程为x=-2,或5x-12y+46=0.
得
| |M1M| |
| |M2M| |
| ||
|
即(x-1)2+(y-1)2=25.
∴点M的轨迹方程是(x-1)2+(y-1)2=25,
所求轨迹是以(1,1)为圆心,以5为半径的圆.
(2)当直线l的斜率不存在时,过点A(-2,3)的直线l:x=-2,
此时过点A(-2,3)的直线l被圆所截得的线段的长为:2
| 52-32 |
∴l:x=-2符合题意.
当直线l的斜率存在时,设过点A(-2,3)的直线l的方程为y-3=k(x+2),即kx-y+2k+3=0,
圆心到l的距离d=
| |3k+2| | ||
|
由题意,得(
| |3k+2| | ||
|
| 5 |
| 12 |
| 5 |
| 12 |
| 23 |
| 6 |
综上,直线l的方程为x=-2,或5x-12y+46=0.
练习册系列答案
相关题目