题目内容

已知f(x)=ax7-bx5+cx3+2,且f(-5)=m则f(5)+f(-5)的值为( )
A.4
B.0
C.2m
D.-m+4
【答案】分析:由题意设g(x)=ax7-bx5+cx3,则得到g(x)=-=-g(x),即g(5)+g(-5)=0,求出f(5)+f(-5)的值.
解答:解:设g(x)=ax7-bx5+cx3,则g(x)=-ax7+bx5-cx3=-g(x),
∴g(5)=-g(-5),即g(5)+g(-5)=0
∴f(5)+f(-5)=g(5)+g(-5)+4=4,
故选A.
点评:本题考查了利用函数的奇偶性求值,根据函数解析式构造函数,再由函数的奇偶性对应的关系式求值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网