题目内容
命题则在下述判断:①p或q为真;②p或q为假;③p且q为真;④p且q为假;⑤非p为真;⑥非q为假.其中正确的的个数为( )
A.2 B.3 C.4 D.5
设.
(1)若函数在上为单调函数,求实数的取值范围;
(2)设.
①证明:函数有3个零点;
②若存在实数,当时函数的值域为,求实数的取值范围.
称为两个向量间的“距离”,若向量满足:
(1);(2);(3)对任意的,恒有,则 ( )
A. B. C. D.
先后抛掷两枚均匀的正方体骰子(它们六个面上分别标有点数1,2,3,4,5,6),骰子朝上的点数分别为X,Y,则log2XY=1的概率为 ( ).
已知命题:方程有两个不等的负实根;命题:方程无实根, 若“或”为真,而“且”为假,求实数的取值范围.
(12分)如图1,在直角梯形中,,是的中点,是AC与的交点,将沿折起到图2中的位置,得到四棱锥.
(Ⅰ)证明:平面;
(Ⅱ)当平面平面时,四棱锥的体积为,求的值.
一个几何体的三视图如图所示,则该几何体的表面积为( )
已知点,过点的直线与圆相交于两点,则的最小值为 .
已知函数,给出下列四个命题:
①存在实数,使得函数恰有2个不同的零点;
②存在实数,使得函数恰有4个不同的零点;
③存在实数,使得函数恰有5个不同的零点;
④存在实数,使得函数恰有8个不同的零点.
其中真命题的序号是(把你认为正确的序号全写上).