题目内容
为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该食品5袋,能获奖的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:3种不同的卡片分别编号1、2、3,购买该食品5袋,能获奖的情况有两种①(5张中有3张相同的)12311;12322;12333;②(5张中有2张相同的)12312;12313;12323,且两事件互斥,根据概率的加法公式可求
解答:解析:获奖可能情况分两类:
①12311;12322;12333;②12312;12313;12323.
①P1=
,②P2=
,
∴P=P1+P2=
=
.
故选D
①12311;12322;12333;②12312;12313;12323.
①P1=
3•
| ||||||
| 35 |
3•
| ||||||||
| 35 |
∴P=P1+P2=
3
| ||||||||||||
| 35 |
| 50 |
| 81 |
故选D
点评:本题主要考查了古典概率的计算,在试验中,若事件的发生不只一种情况,且两事件不可能同时发生,求解概率时,利用互斥事件的概率求解.还要熟练应用排列、组合的知识.
练习册系列答案
相关题目