题目内容
已知x、y、z为正数,且xyz(x+y+z)=1,求(x+y)(y+z)的最小值.
解:∵x,y,z为正数,且xyz(x+y+z)=1,
∴(x+y)(y+z)=xz+y(x+y+z)
≥
=2.
当x=z=1,y=
-1时,(x+y)(y+z)取最小值2.
练习册系列答案
相关题目
题目内容
已知x、y、z为正数,且xyz(x+y+z)=1,求(x+y)(y+z)的最小值.
解:∵x,y,z为正数,且xyz(x+y+z)=1,
∴(x+y)(y+z)=xz+y(x+y+z)
≥
=2.
当x=z=1,y=
-1时,(x+y)(y+z)取最小值2.