题目内容
已知函数f(x)为偶函数,且f(2+x)=f(2-x),当-2≤x≤0时f(x)=2*,又当n∈N×时an=f(n),则a2010=______.
∵函数f(x)为偶函数
∴f(-x)=f(x)
∵f(2+x)=f(2-x)
∴f(4+x)=f(-x)=f(x)即函数的周期为4
∵-2≤x≤0时f(x)=2x,
则a2010=f(2010)=f(4×502+2)=f(2)=f(-2)=
故答案为:
∴f(-x)=f(x)
∵f(2+x)=f(2-x)
∴f(4+x)=f(-x)=f(x)即函数的周期为4
∵-2≤x≤0时f(x)=2x,
则a2010=f(2010)=f(4×502+2)=f(2)=f(-2)=
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
练习册系列答案
相关题目