题目内容
(2012•铁岭模拟)点P是曲线y=x2-lnx上任意一点,则点P到直线y=x+2的距离的最小值是
.
| 2 |
| 2 |
分析:求出平行于直线y=x+2且与曲线y=x2-lnx相切的切点坐标,再利用点到直线的距离公式可得结论.
解答:解:设P(x,y),则y′=2x-
(x>0)
令2x-
=1,则(x-1)(2x+1)=0,
∵x>0,∴x=1
∴y=1,即平行于直线y=x+2且与曲线y=x2-lnx相切的切点坐标为(1,1)
由点到直线的距离公式可得d=
=
故答案为:
| 1 |
| x |
令2x-
| 1 |
| x |
∵x>0,∴x=1
∴y=1,即平行于直线y=x+2且与曲线y=x2-lnx相切的切点坐标为(1,1)
由点到直线的距离公式可得d=
| |1-1+2| | ||
|
| 2 |
故答案为:
| 2 |
点评:本题考查导数知识的运用,考查点到直线的距离公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关题目