题目内容
9.“λ<1”是“数列{n2-2λn}(n∈N*)为递增数列”的( )| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 由“λ<1”可得 an+1-an>0,推出“数列an=n2-2λn(n∈N*)为递增数列”.由“数列an=n2-2λn(n∈N*)为递增数列”,不能推出“λ<1”,由此得出结论.
解答 解:由“λ<1”可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,
故可推出“数列an=n2-2λn(n∈N*)为递增数列”,故充分性成立.
由“数列an=n2-2λn(n∈N*)为递增数列”
可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,
故λ<$\frac{2n+1}{2}$,
故λ<$\frac{3}{2}$,不能推出“λ<1”,故必要性不成立.
故“λ<1”是“数列an=n2-2λn(n∈N*)为递增数列”的充分不必要条件,
故选:A.
点评 本题主要考查充分条件、必要条件、充要条件的定义,数列的单调性的判断方法,属于基础题.
练习册系列答案
相关题目
19.已知数列{an}为等差数列,其前n项和为Sn,若a3+a5+a7=$\frac{π}{4}$则sinS9的值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
4.函数f(x)=xex-1的单调递增区间是( )
| A. | (-∞,-1) | B. | (0,1) | C. | (1,2) | D. | (-1,+∞) |
14.若函数f(x)=x-1-alnx(a<0)对任意x1,x2∈(0,1],都有|f(x1)-f(x2)|≤4|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,则实数a的取值范围是( )
| A. | (-∞,0) | B. | (-∞,-3] | C. | [-3,0) | D. | (-3,0) |
9.设集合A={x|x≥2},B={x|$\frac{x-1}{x-4}>0$},则A∩B=( )
| A. | ∅ | B. | [2,4) | C. | [2,+∞) | D. | (4,+∞) |