题目内容

9.“λ<1”是“数列{n2-2λn}(n∈N*)为递增数列”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由“λ<1”可得 an+1-an>0,推出“数列an=n2-2λn(n∈N*)为递增数列”.由“数列an=n2-2λn(n∈N*)为递增数列”,不能推出“λ<1”,由此得出结论.

解答 解:由“λ<1”可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,
故可推出“数列an=n2-2λn(n∈N*)为递增数列”,故充分性成立.
由“数列an=n2-2λn(n∈N*)为递增数列”
可得 an+1-an=[(n+1)2-2λ(n+1)]-[n2-2λn]=2n-2λ+1>0,
故λ<$\frac{2n+1}{2}$,
故λ<$\frac{3}{2}$,不能推出“λ<1”,故必要性不成立.
故“λ<1”是“数列an=n2-2λn(n∈N*)为递增数列”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件、必要条件、充要条件的定义,数列的单调性的判断方法,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网