题目内容
7.若i为复数单位,复数z=$\frac{1-ai}{i}$在复平面内对应的点在直线x+2y+5=0上,则实数a的值为( )| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 利用复数的运算法则、几何意义、直线的方程即可得出.
解答 解:复数z=$\frac{1-ai}{i}$=$\frac{-i(1-ai)}{-i•i}$=-i-a在复平面内对应的点(-a,-1)在直线x+2y+5=0上,
∴-a-2+5=0,
解得a=3.
故选:B.
点评 本题考查了复数的运算法则、几何意义、直线的方程,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
17.已知函数f(x)=$\frac{1+lnx}{x}$,若关于x的不等式f2(x)+af(x)>0恰有两个整数解,则实数a的取值范围是( )
| A. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$) | B. | [$\frac{1+ln3}{3}$,$\frac{1+ln2}{2}$) | C. | (-$\frac{1+ln2}{2}$,-$\frac{1+ln3}{3}$] | D. | (-1,-$\frac{1+ln3}{3}$] |
18.在等差数列{an}中,Sn为其前n项和,若a3+a4+a8=25,则S9=( )
| A. | 60 | B. | 75 | C. | 90 | D. | 105 |
15.中石化集团获得了某地深海油田块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点米布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见下表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehat{b}$,$\widehat{a}$的值($\widehat{b}$,$\widehat{a}$精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{4}{{x}_{2i-1}}^{2}$=94,$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.
| 井号I | 1 | 2 | 3 | 4 | 5 | 6 |
| 坐标(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
| 钻探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
| 出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
(Ⅱ)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的$\widehat{b}$,$\widehat{a}$的值($\widehat{b}$,$\widehat{a}$精确到0.01)与(I)中b,a的值差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井?(参考公式和计算结果:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\sum_{i=1}^{4}{{x}_{2i-1}}^{2}$=94,$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945)
(Ⅲ)设出油量与勘探深度的比值k不低于20的勘探井称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数X的分布列与数学期望.
2.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织( )尺布.
| A. | $\frac{16}{31}$ | B. | $\frac{16}{29}$ | C. | $\frac{1}{2}$ | D. | $\frac{8}{15}$ |
12.已知过抛物线y2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则直线l的方程为( )
| A. | x-2y-1=0 | B. | 2x-y-2=0 | C. | x-$\sqrt{3}$y-1=0 | D. | $\sqrt{3}$x-y-$\sqrt{3}$=0 |
16.已知函数y=f(x=2)是偶函数,且当x≠2时其导函数f′(x)满足(x-2)f′(x)>0,若2<a<3,则下列不等式式成立的是( )
| A. | f(2a)<f(3)<f(log2a) | B. | f(3)<f(log2a)<f(2a) | C. | f(log2a)<f(3)<f(2a) | D. | f(log2a)<f(2a)<f(3) |