题目内容

5.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},(x≤0)}\\{\sqrt{4-{x^2}}(x>0)}\end{array}}$,则$\int_{-1}^2{f(x)dx}$=$π+\frac{1}{3}$.

分析 $\int_{-1}^2{f(x)dx}$=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx,根据定积分的计算和定积分的几何意义,计算即可.

解答 解:$\int_{-1}^2{f(x)dx}$=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx,
因为${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx表示以原点为圆心,以2为半径的圆的面积的四分之一,所以${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx=$\frac{1}{4}$×22π=π,
${∫}_{-1}^{0}$x2dx=$\frac{1}{3}{x}^{3}$|${\;}_{-1}^{0}$=$\frac{1}{3}$,
所以$\int_{-1}^2{f(x)dx}$=${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx+${∫}_{-1}^{0}$x2dx=π+$\frac{1}{3}$
故答案为:$π+\frac{1}{3}$.

点评 本题考查了定积分的计算和定积分的几何意义,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网