题目内容
下列命题中真命题的编号是 .(填上所有正确的编号)①向量
②
③A、B、C、D是空间不共面的四点,若
④向量
⑤若向量
【答案】分析:①利用共线定理判断.②利用平面向量的数量积判断.③利用数量积的应用判断.④利用向量的四则运算进行判断.⑤利用向量共线的性质判断.
解答:解:①由向量共线定理可知,当
时,不成立.所以①错误.
②若|
-
|>1,则平方得
,即
,又
,所以
<θ≤π,即②正确.
③
=
,
,即B为锐角,同理A,C也为锐角,故△BCD是锐角三角形,所以③正确.
④若足
=
+
,则足
-
=
=
,所以
,所以则
与
共线,但不一定方向相同,所以④错误.
⑤当
时,满足向量
∥
,
∥
,但
不一定平行
,所以⑤错误.
故答案为:②③.
点评:本题主要考查平面向量的基本运算以及向量的数量积的应用.
解答:解:①由向量共线定理可知,当
②若|
③
④若足
⑤当
故答案为:②③.
点评:本题主要考查平面向量的基本运算以及向量的数量积的应用.
练习册系列答案
相关题目