题目内容

已知函数f(x)=x3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.则下列说法中不正确的编号是
(1)
(1)
.(写出所有不正确说法的编号)
(1)当x=
32
时函数取得极小值;
(2)f(x)有两个极值点;
(3)c=6;
(4)当x=1时函数取得极大值.
分析:求出原函数的导函数,导函数是二次函数,由导函数的图象可知原函数的单调区间,从而判出极值点,结合导函数的图象经过(1,0)和(2,0)两点,得到c的值,然后注意核对4个命题,则答案可求.
解答:解:由f(x)=x3+bx2+cx,所以f′(x)=3x2+2bx+c.
由导函数的图象可知,当x∈(-∞,1),(2,+∞)时f′(x)>0,
当x∈(1,2)时f′(x)<0.
所以函数f(x)的增区间为(-∞,1),(2,+∞)
减区间为(1,2).
则函数f(x)在x=1时取得极大值,在x=2时取得极小值.
由此可知(1)不正确,(2),(4)正确,
把(1,0),(2,0)代入导函数解析式得
3+2b+c=0
12+4b+c=0
,解得c=6.
所以(3)正确.
故答案为(1).
点评:本题考查了利用导数研究函数的极值,考查了函数的单调性与导函数的符号之间的关系,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网