题目内容

若x∈(0,2π),函数y=
sinx
+
-tanx
的定义域为(  )
分析:根据题意可得
sinx≥0
-tanx≥0
,结合已知x∈(0,2π)解三角不等式可求函数的定义域.
解答:解:由题意可得
sinx≥0
-tanx≥0

∵χ∈(0,2π)
0≤x≤π
π
2
<x≤π,或
2
<x≤2π

所以函数的定义域是{x|
π
2
<x≤π
}
故选A.
点评:本题借助于求函数的定义域,考查三角不等式的解法,解决的方法利用三角函数线或者三角函数的图象.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网