题目内容
数列{an}中,a4=2,a8=1,且数列{
}是等差数列,则a12的值为( )
| 1 |
| an+1 |
分析:设数列{
}的公差为d,依题意,
,
,
成等差数列,从而可求得
,继而可求得a12的值.
| 1 |
| an+1 |
| 1 |
| a4+1 |
| 1 |
| a8+1 |
| 1 |
| a12+1 |
| 1 |
| a12+1 |
解答:解:∵a4=2,a8=1,数列{
}是等差数列,设数列{
}的公差为d,
依题意,
,
,
成等差数列,
∴2×
=
+
,
即2×
=
+
,
∴
=
,
∴a12+1=
,
∴a12=
.
故选C.
| 1 |
| an+1 |
| 1 |
| an+1 |
依题意,
| 1 |
| a4+1 |
| 1 |
| a8+1 |
| 1 |
| a12+1 |
∴2×
| 1 |
| a8+1 |
| 1 |
| a4+1 |
| 1 |
| a12+1 |
即2×
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| a12+1 |
∴
| 1 |
| a12+1 |
| 2 |
| 3 |
∴a12+1=
| 3 |
| 2 |
∴a12=
| 1 |
| 2 |
故选C.
点评:本题考查等差数列的通项公式与等差数列的性质,分析得
,
,
成等差数列是关键,考查整体把握的能力,属于中档题.
| 1 |
| a4+1 |
| 1 |
| a8+1 |
| 1 |
| a12+1 |
练习册系列答案
相关题目