题目内容
8.函数$f(x)=\left\{\begin{array}{l}{log_5}({1-x})({x<1})\\-{({x-2})^2}+2({x≥1})\end{array}\right.$,则方程f(|x|)=a(a∈R)实根个数不可能为( )| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4 个 |
分析 由题意可得求函数y=f(|x|)的图象和直线y=a的交点个数.作出函数y=f(|x|)的图象,平移直线y=a,即可得到所求交点个数,进而得到结论
解答 解:方程f(|x|)=a,(a∈R)实根个数
即为函数y=f(|x|)和直线y=a的交点个数.
由y=f(|x|)为偶函数,可得图象关于y轴对称.
作出函数y=f(|x|)的图象,如图,![]()
平移直线y=a,可得它们有2个、3个、4个交点.
不可能有1个交点,即不可能有1个实根.
故选:A.
点评 本题考查方程的实根个数问题的解法,注意运用转化思想和数形结合的方法,考查判断和作图能力,属于中档题.
练习册系列答案
相关题目
3.已知函数$f(x)=\frac{{\sqrt{9-{x^2}}}}{{|{6-x}|-6}}$,则函数的奇偶性为( )
| A. | 既是奇函数也是偶函数 | B. | 既不是奇函数也不是偶函数 | ||
| C. | 是奇函数不是偶函数 | D. | 是偶函数不是奇函数 |
13.已知关于x的方程为x2+x+n2=0,若n∈[-1,1],则方程有实数根的概率为( )
| A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
20.经过点M(2$\sqrt{6}$,-2$\sqrt{6}$)且与双曲线$\frac{y^2}{3}$-$\frac{x^2}{4}$=1有共同渐近线的双曲线方程为( )
| A. | $\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1 | B. | $\frac{{y}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1 | C. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1 | D. | $\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1 |
18.关于实数x,y的不等式组$\left\{\begin{array}{l}x≤4\\ y≥2\\ x-y+2≥0\end{array}\right.$所表示的平面区域记为M,不等式(x-4)2+(y-3)2≤1所表示的区域记为N,若在M内随机取一点,则该点取自N的概率为( )
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |