题目内容

如图,过抛物线y2=2px(p>0)上一定点P(x,y)(y>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2
(I)求该抛物线上纵坐标为的点到其焦点F的距离
(II)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.

【答案】分析:(I)把代入抛物线方程求得x,进而利用抛物线的方程推断出准线方程,最后根据抛物线的定义求得答案.
(II)设出直线PA,PB的斜率,把A,P点代入抛物线的方程相减后,表示出两直线的斜率,利用其倾斜角互补推断出
kPA=-kPB,求得三点纵坐标的关系式,同样把把A,B点代入抛物线的方程相减后,表示出AB的斜率,将y1+y2=-2y代入求得结果为非零常数.
解答:解:(I)当时,
又抛物线y2=2px的准线方程为
由抛物线定义得,所求距离为

(II)设直线PA的斜率为kPA,直线PB的斜率为kPB
由y12=2px1,y2=2px
相减得(y1-y)(y1+y)=2p(x1-x

同理可得
由PA,PB倾斜角互补知kPA=-kPB

所以y1+y2=-2y

设直线AB的斜率为kAB
由y22=2px2,y12=2px1
相减得(y2-y1)(y2+y1)=2p(x2-x1
所以
将y1+y2=-2y(y>0)代入得,所以kAB是非零常数
点评:本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网