题目内容

从2、4、8、16、32、64、128、256这8个数中任取三个数,共有56种不同的取法(两种取法不同,指的是一种取法中至少有一个数与另一种取法中的三个数都不相同).
(Ⅰ)求取出的三个数能够组成等比数列的概率;
(Ⅱ)求取出的三个数的乘积为1024的概率.
分析:(Ⅰ)根据题意,由组合数公式可得从8个数中任取三个数有C83=56种情况,记“取出的三个数能组成等比数列”为事件A,列举A包含的情况,由等可能事件的概率公式,计算可得答案;
(Ⅱ)记“取出的三个数的乘积为1024”的事件为B,列举B包含的情况,由等可能事件的概率公式,计算可得答案.
解答:解:(I)由题意可知,从2、4、8、16、32、64、128、256这8个数中任取三个数,共有C83=56种情况.
记“取出的三个数能组成等比数列”为事件A,
则A包含:(2,4,8)、(2,8,32)、(2,16,128)、(4,8,16)、(4,16,64)、(8,16,32)、(8,32,128)、(16,32,64)、(16,64,256)、(32,64,128)、(64,128、256)共11种情况,
所以,P(A)=
11
56

(II)记“取出的三个数的乘积为1024”的事件为B,
则B包含(2,4,128)、(2,8,64)、(2,16,32)、(4,8,32)共4种情况,
所以,P(B)=
4
56
=
1
14
点评:本题考查等可能事件的概率,涉及列举法列举事件的基本情况,注意列举做到不重不漏.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网