题目内容

(1)△ABC中,证明:sin2A=sin2B+sin2C-2sinBsinCcosA
(2)计算:sin217°+cos247°+sin17°cos47°.

解:(1)△ABC中,根据余弦定理,得a2=b2+c2-2bccosA…(*)
又∵===2R(R是外接圆半径)
∴a=2RsinA,b=2RsinB,c=2RsinC
代入(*)式,得4R2sin2A=4R2sin2B+4R2sin2C-2•2RsinB•2RsinCcosA
两边约去4R2,得sin2A=sin2B+sin2C-2sinBsinCcosA,原等式成立.
(2)∵cos47°=cos(90°-43°)=sin43°
∴sin217°+cos247°+sin17°cos47°=sin217°+sin243°+sin17°sin43°
设△ABC中,B=17°,C=43°,则A=180°-(17°+43°)=120°
由(1)得:sin2A=sin2B+sin2C-2sinBsinCcosA,
即sin2120°=sin217°+sin243°-2sin17°sin43°cos120°=sin217°+sin243°+sin17°sin43°
∴sin217°+sin243°+sin17°sin43°=sin2120°=(2=
即sin217°+cos247°+sin17°cos47°=
分析:(1)根据余弦定理得到a2关于b、c和cosA的式子,结合正弦定理得a=2RsinA、b=2RsinB、c=2RsinC,将其代入前面的式子,约去4R2即可得到所求证的等式成立.
(2)由诱导公式得cos47°=sin43°,从而原式=sin217°+sin243°+sin17°sin43°.构造△ABC中:B=17°,C=43°,A=120°,利用(1)中的结论可得原式=sin2120°=
点评:本题利用正、余弦定理,证明了一个三角恒等式,并利用该式求值,着重考查了三角恒等变换和正余弦定理等知识,属于基础题.
练习册系列答案
相关题目

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网