ÌâÄ¿ÄÚÈÝ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£¨n¡ÊN*£©£¬ÊýÁÐ{cn}Âú×ãcn=
|
£¨3£©ÈôÊýÁÐPn=
| 4 |
| 3 |
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªa1=2£¬2an=an2-an-12+an-an-1£¬ÓÉan£¾0£¬Öªan-an-1=1ÓÉ´ËÄÜÇó³öan£®
£¨2£©ÓÉÌâÉèÖªbn=2n£¨n¡ÊN*£©£®nΪżÊýʱ£¬Tn=£¨a1+a3+¡+an-1£©+£¨b2+b4+¡+bn£©=
+
=
+
(2n-1)£®
£¨3£©ÓɳÌÐò¿ÉÖª£¬nΪżÊý£¬Tn=
+
(2n-1)£¬Pn=
(2n-1)£¬Éèdn=A-B=Tn-Pn=
£¬n=8ʱ£¬Tn-Pn=20³ÉÁ¢£¬³ÌÐòÍ£Ö¹£®ÒÒͬѧµÄ¹Ûµã´íÎó£®
£¨2£©ÓÉÌâÉèÖªbn=2n£¨n¡ÊN*£©£®nΪżÊýʱ£¬Tn=£¨a1+a3+¡+an-1£©+£¨b2+b4+¡+bn£©=
(a1+an-1)•
| ||
| 2 |
4(1-4
| ||
| 1-4 |
| n2+2n |
| 4 |
| 4 |
| 3 |
£¨3£©ÓɳÌÐò¿ÉÖª£¬nΪżÊý£¬Tn=
| n2+2n |
| 4 |
| 4 |
| 3 |
| 4 |
| 3 |
| n2+2n |
| 4 |
½â´ð£º½â£º£¨1£©n=1£¬2£¨S1+1£©=a12+a1?a1=2£®£¨2·Ö£©
£¬
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®£¨4·Ö£©
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®£¨5·Ö£©
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£®£¨7·Ö£©
nΪżÊýʱ£¬Tn=£¨a1+a3+¡+an-1£©+£¨b2+b4+¡+bn£©£®£¨8·Ö£©
=
+
=
+
(2n-1)£®£¨10·Ö£©
£¨3£©ÓɳÌÐò¿ÉÖª£¬nΪżÊý£¬
¡àTn=
+
(2n-1)£¬Pn=
(2n-1)
Éèdn=A-B=Tn-Pn=
£®£¨13·Ö£©
¡ßn=8ʱ£¬
=20£¬ÇÒnΪżÊý
¡àn=8ʱ£¬Tn-Pn=20³ÉÁ¢£¬³ÌÐòÍ£Ö¹£®£¨14·Ö£©
¡àÒÒͬѧµÄ¹Ûµã´íÎ󣮣¨16·Ö£©
|
Á½Ê½Ïà¼õ£¬µÃ2an=an2-an-12+an-an-1
¡ßan£¾0£¬¡àan-an-1=1£®£¨4·Ö£©
?{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ2£¬¹«²îΪ1
¡àan=n+1£¨n¡ÊN*£©£®£¨5·Ö£©
£¨2£©¡ß{bn}ÊÇÊ×ÏîΪ2£¬¹«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡àbn=2n£¨n¡ÊN*£©£®£¨7·Ö£©
nΪżÊýʱ£¬Tn=£¨a1+a3+¡+an-1£©+£¨b2+b4+¡+bn£©£®£¨8·Ö£©
=
(a1+an-1)•
| ||
| 2 |
4(1-4
| ||
| 1-4 |
| n2+2n |
| 4 |
| 4 |
| 3 |
£¨3£©ÓɳÌÐò¿ÉÖª£¬nΪżÊý£¬
¡àTn=
| n2+2n |
| 4 |
| 4 |
| 3 |
| 4 |
| 3 |
Éèdn=A-B=Tn-Pn=
| n2+2n |
| 4 |
¡ßn=8ʱ£¬
| n2+2n |
| 4 |
¡àn=8ʱ£¬Tn-Pn=20³ÉÁ¢£¬³ÌÐòÍ£Ö¹£®£¨14·Ö£©
¡àÒÒͬѧµÄ¹Ûµã´íÎ󣮣¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐͨÏʽµÄÇ󷨺ÍÊýÁÐǰnÏîºÍµÄ¼ÆËã·½·¨£¬ÒÔ³ÌÐòÍ¼ÎªÔØÌ忼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿