题目内容

(Ⅰ)设a,b,c∈(0,+∞),求证:
a2
b
+
b2
c
+
c2
a
≥a+b+c;
(Ⅱ)已知a+b=1,对?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,求x的取值范围.
考点:综合法与分析法(选修),函数恒成立问题
专题:证明题,综合题,不等式的解法及应用
分析:(Ⅰ)a>0,b>0,c>0,利用基本不等式,可得
a2
b
+b≥2a,同理
b2
c
+b≥2b,
c2
a
+a≥2c,三式累加即可证得结论成立;
(Ⅱ)利用基本不等式可求得
1
a
+
4
b
=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
≥9,于是
1
a
+
4
b
≥|2x-1|-|x+1|恒成立?|2x-1|-|x+1|≤9恒成立,通过对x范围的分类讨论,去掉绝对值符号后解之,即可求得x的取值范围.
解答: 解:(Ⅰ)∵a,b,c∈(0,+∞),
∴a2+b2≥2ab,
a2
b
+b≥2a,同理
b2
c
+b≥2b,
c2
a
+a≥2c,
相加得
a2
b
+
b2
c
+
c2
a
+a+b+c≥2a+2b+2c,
a2
b
+
b2
c
+
c2
a
≥a+b+c;
(Ⅱ)∵a>0,b>0 且a+b=1,
1
a
+
4
b
=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
≥9,
1
a
+
4
b
的最小值为9.               
∵对?a,b∈(0,+∞),
1
a
+
4
b
≥|2x-1|-|x+1|恒成立,
∴|2x-1|-|x+1|≤9.
∴当x≤-1时,2-x≤9,解得:x≥-7,
∴-7≤x≤-1;
当-1<x<
1
2
时,-3x≤9,解得:x≥-3,
∴-1<x<
1
2

当x≥
1
2
时,x-2≤9,解得:x≤11,
1
2
≤x≤11;
综上所述,x的取值范围为:-7≤x≤11.
点评:本题考查基本不等式的应用,突出考查综合法证明不等式,考查转化思想与推理论证的能力,考查分类讨论思想与恒成立问题,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网