题目内容

求sin(-1 200°)·cos1 290°+cos(-1 020°)·sin(-1 050°)+tan945°的值.

解:原式=-sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°) +tan(2×360°+225°)

=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)sin(360°-30°)+tan(180°+45°)

=sin60°·cos30°+cos60°·sin30°+tan45°

=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网