题目内容
求sin(-1 200°)·cos1 290°+cos(-1 020°)·sin(-1 050°)+tan945°的值.
解:原式=-sin(3×360°+120°)·cos(3×360°+210°)-cos(2×360°+300°)·sin(2×360°+330°) +tan(2×360°+225°)
=-sin(180°-60°)·cos(180°+30°)-cos(360°-60°)sin(360°-30°)+tan(180°+45°)
=sin60°·cos30°+cos60°·sin30°+tan45°
=![]()
练习册系列答案
相关题目