题目内容
1.三角形ABC中,sinA=$\frac{12}{13}$,cosB=$\frac{4}{5}$,则cosC=$\frac{56}{65}$或$\frac{16}{65}$.分析 由条件求得cosA、cosB的值,再根据cosC=-cos(A+B),利用两角和差的余弦公式计算求得结果.
解答 解:三角形ABC中,sinA=$\frac{12}{13}$,cosB=$\frac{4}{5}$,∴sinB=$\frac{3}{5}$,cosB=$\sqrt{{1-sin}^{2}B}$=$\frac{4}{5}$,∴a>b,
当A为钝角时,cosA=-$\sqrt{{1-sin}^{2}A}$=-$\frac{5}{13}$,
∴cosC=-cos(A+B)=-[cosAcosB-sinAsinB]=-[-$\frac{5}{13}$•$\frac{4}{5}$-$\frac{12}{13}$•$\frac{3}{5}$]=$\frac{56}{65}$.
当A为锐角,cosA=$\sqrt{{1-sin}^{2}A}$=$\frac{5}{13}$,
cosC=-cos(A+B)=-[cosAcosB-sinAsinB]=-[$\frac{5}{13}$•$\frac{4}{5}$-$\frac{12}{13}$•$\frac{3}{5}$]=$\frac{16}{65}$,
故答案为:$\frac{56}{65}$ 或$\frac{16}{65}$.
点评 本题主要考查同角三角函数的基本关系,诱导公式、两角和差的余弦公式的应用,属于中档题.
练习册系列答案
相关题目
9.与平面向量$\overrightarrow{a}$=(-$\frac{1}{3}$,-$\frac{2}{3}$)垂直的单位向量的坐标为( )
| A. | ($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$) | B. | (-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) | ||
| C. | ($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$) | D. | ($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) |
10.已知x,y满足约束条件$\left\{\begin{array}{l}{2y-x-1≥0}\\{2y-3x+1≤0}\\{2y+x-11≤0}\end{array}\right.$,z=ax+by(a>b>0)最大值为12,则$\frac{5}{a}$+$\frac{2}{b}$的最小值为( )
| A. | $\frac{31+10\sqrt{6}}{12}$ | B. | $\frac{23+4\sqrt{30}}{12}$ | C. | $\frac{7+2\sqrt{10}}{12}$ | D. | 4 |