题目内容
若对任意不等式恒成立,则实数范围 ( )
A. B. C. D.
B
已知函数在处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 (1)求的解析式; (2)若在区间上是增函数,数的取值范围;(3)若对任意,不等式恒成立,求的最小值.
已知定义域为的函数是奇函数.
(1)求的值;
(2)利用定义判断函数的单调性;
(3)若对任意,不等式恒成立,求实数的取值范围.
(本题满分12分)已知函数在处取得极值.
(1)求在[0,1]上的单调区间;
(2)若对任意,不等式恒成立,求实数的取值范围.
已知函数在处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3
(1)求的解析式;
(2)若在区间上是增函数,数的取值范围;
(3)若对任意,不等式恒成立,求的最小值.
已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)设,若对任意,,不等式 恒成立,求实数的取值范围.
【解析】第一问利用的定义域是
由x>0及 得1<x<3;由x>0及得0<x<1或x>3,
故函数的单调递增区间是(1,3);单调递减区间是
第二问中,若对任意不等式恒成立,问题等价于只需研究最值即可。
解: (I)的定义域是 ......1分
............. 2分
故函数的单调递增区间是(1,3);单调递减区间是 ........4分
(II)若对任意不等式恒成立,
问题等价于, .........5分
由(I)可知,在上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以; ............6分
当b<1时,;
当时,;
当b>2时,; ............8分
问题等价于 ........11分
解得b<1 或 或 即,所以实数b的取值范围是