题目内容

已知数列{an}各项均为正数,其前n项和为Sn,且满足4Sn=(an+1)2
(1)求{an}的通项公式;
(2)设bn=
1anan+1
,数列{bn}前n项和为Tn,求Tn的最小值.
分析:(1)由4Sn=(an+1)2,得4Sn+1=(an+1+1)2,两者作差,研究{an}的相邻项的关系,由此关系求其通项即可.
(2)由(1)可得bn=
1
anan+1
=
1
(2n-1)•[2(n+1)-1]
=
1
2
×(
1
2n-1
-
1
2n+1
)
,裂项求和即可.
解答:解:(1)由题设条件知4Sn=(an+1)2,得4Sn+1=(an+1+1)2,两者作差,得4an+1=(an+1+1)2-(an+1)2
整理得(an+1-1)2=(an+1)2
又数列{an}各项均为正数,所以an+1-1=an+1,即an+1=an+2,
故数列{an}是等差数列,公差为2,又4S1=4a1=(a1+1)2,解得a1=1,故有an=2n-1
(2)由(1)可得bn=
1
anan+1
=
1
(2n-1)•[2(n+1)-1]
=
1
2
×(
1
2n-1
-
1
2n+1
)

∴Tn=
1
2
×(
1
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n+1
)=
1
2
×(1-
1
2n+1
)

由其形式可以看出,Tn关于n递增,故其最小值为T1=
1
3
点评:本题考查数列求和,求解的关键是根据其通项的形式将其项分为两项的差,采用裂项求和的技巧求和,在裂项时要注意分母上两个因子相差2不是1,故裂项后应乘以
1
2
,此是裂项时空间出错的地方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网