题目内容
已知数列{an}各项均不为0,其前n项和为Sn,且对任意n∈N*都有(1-p)Sn=p-pan(p≠±1的常数),记f(n)=
.
(Ⅰ)求an;
(Ⅱ)求
;
(Ⅲ)当p>1时,设bn=
-
,求数列{pk+1bkbk+1}的前n项和.
1+
| ||||||
| 2nSn |
(Ⅰ)求an;
(Ⅱ)求
| lim |
| n→∞ |
| f(n+1) |
| f(n) |
(Ⅲ)当p>1时,设bn=
| p+1 |
| 2p |
| f(n+1) |
| f(n) |
分析:(1)由已知(1-p)Sn=p-pan,可得(1-p)Sn+1=p-pan+1.两式相减可得an+1与pan的递推关系,结合等比数列的通项公式可求
(2)由题意知,p≠±1时,由(1)可求Sn,利用二项式系数的性质可求f(n),进而可求f(n+1),代人可求极限
(3)由(2)可求bn,代入pk+1bkbk+1,利用裂项求和即可求解
(2)由题意知,p≠±1时,由(1)可求Sn,利用二项式系数的性质可求f(n),进而可求f(n+1),代人可求极限
(3)由(2)可求bn,代入pk+1bkbk+1,利用裂项求和即可求解
解答:解:(1)∵(1-p)Sn=p-pan,①
∴(1-p)Sn+1=p-pan+1.②
②-①,得(1-p)an+1=-pan+1+pan,
即an+1=pan.(3分)
在①中令n=1,可得a1=p.
∴{an}是首项为a1=p,公比为p的等比数列,an=pn.(4分)
(2)由题意知,p≠±1时,由(1)可得Sn=
=
.
1+
a1+
a2+…+
an
=1+p
+p2
+…+
pn=(1+p)n=(p+1)n.
∴f(n)=
=
•
,
f(n+1)=
•
. (5分)
=(p+1)
=
,
所以
=
(8分)
(3)由(2)可得bn=
-
=
•
,
又pk+1bkbk+1=
•(
-
),
所以
pk+1bkbk+1=
(
-
). (12分)
∴(1-p)Sn+1=p-pan+1.②
②-①,得(1-p)an+1=-pan+1+pan,
即an+1=pan.(3分)
在①中令n=1,可得a1=p.
∴{an}是首项为a1=p,公比为p的等比数列,an=pn.(4分)
(2)由题意知,p≠±1时,由(1)可得Sn=
| p(1-pn) |
| 1-p |
| p(pn-1) |
| p-1 |
1+
| C | 1 n |
| C | 2 n |
| C | n n |
=1+p
| C | 1 n |
| C | 2 n |
| C | n n |
∴f(n)=
1+
| ||||||
| 2nSn |
| p-1 |
| p |
| (p+1)n |
| 2n(pn-1) |
f(n+1)=
| p-1 |
| p |
| (p+1)n+1 |
| 2n+1(pn+1-1) |
| lim |
| n→∞ |
| f(n+1) |
| f(n) |
| lim |
| n→∞ |
| pn-1 |
| 2(pn+1-1) |
|
所以
| lim |
| n→∞ |
| f(n+1) |
| f(n) |
|
(3)由(2)可得bn=
| p+1 |
| 2p |
| f(n+1) |
| f(n) |
| (p-1)(p+1) |
| 2p |
| 1 |
| pn+1-1 |
又pk+1bkbk+1=
| (p+1)(p2-1) |
| 4p2 |
| 1 |
| pk+1-1 |
| 1 |
| pk+2-1 |
所以
| n |
| k=1 |
| (p+1)(p2-1) |
| 4p2 |
| 1 |
| p2-1 |
| 1 |
| pn+2-1 |
点评:本题主要考查了利用数列的递推关系求解数列的通项公式,二项式系数的性质,数列的极限的求解,本题具有一定的综合性
练习册系列答案
相关题目