题目内容

19.已知函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)的图象在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+$\frac{π}{2}$,-2).
(1)求函数f(x)的解析式;
(2)求sin(x0+$\frac{π}{4}$)的值.

分析 (1)根据条件求出振幅以及函数的周期,即可求函数f(x)的解析式;
(2)根据函数的最值,求出x0的大小,结合两角和差的正弦公式进行求解即可.

解答 解:(1)∵图象在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+$\frac{π}{2}$,-2).
∴A=2,$\frac{T}{2}$=x0+$\frac{π}{2}$-x0=$\frac{π}{2}$,
即函数的周期T=π,即T=$\frac{2π}{ω}=π$,解得ω=2,
即f(x)=2sin(2x+$\frac{π}{6}$).
(2)∵函数的最高点的坐标为(x0,2),

∴2x0+$\frac{π}{6}$=$\frac{π}{2}$,
即x0=$\frac{π}{6}$,
则sin(x0+$\frac{π}{4}$)=sin($\frac{π}{6}$+$\frac{π}{4}$)=sin$\frac{π}{6}$cos$\frac{π}{4}$+cos$\frac{π}{6}$sin$\frac{π}{4}$
=$\frac{\sqrt{2}}{2}$(sin$\frac{π}{6}$+cos$\frac{π}{6}$)=$\frac{\sqrt{2}}{2}$($\frac{1}{2}+\frac{\sqrt{3}}{2}$)=$\frac{\sqrt{2}+\sqrt{6}}{4}$.

点评 本题主要考查三角函数的解析式的求解,以及三角函数值的计算,利用两角和差的正弦公式是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网