题目内容
(1)求证:面A1BE⊥面BCDE;
(2)若BC=2,求A1C与面A1BE所成角的正切值.
分析:(1)作A1F⊥BE于F,A1G⊥CD于G,连FG,证明FG是梯形BCDE的中位线,进而证明CD⊥面A1FG,A1F⊥面BCDE,利用面面垂直的判定定理,可得面A1BE⊥面BCDE;
(2)连接CE,证明CE⊥面A1BE,可得∠CA1E为A1C与面A1BE所成角,从而可求A1C与面A1BE所成角的正切值.
(2)连接CE,证明CE⊥面A1BE,可得∠CA1E为A1C与面A1BE所成角,从而可求A1C与面A1BE所成角的正切值.
解答:
(1)证明:作A1F⊥BE于F,A1G⊥CD于G,连FG.
∵AB:AD=1:2,E是AD中点,
∴AB=AE,即A1BA1E.
∵A1F⊥BE,
∴AF=FE,
∵A1C=A1D,A1G⊥CD,
∴CG=GD,
∴FG是梯形BCDE的中位线,
∴BC∥FG∥DE,
∴FG⊥CD.
∵A1G⊥CD,
∴CD⊥面A1FG,
∴CD⊥A1F.
∵A1F⊥BE,
∴A1F⊥面BCDE,
∵A1F?面A'BE,
∴面A1BE⊥面BCDE;
(2)解:连接CE,则
∵BE=CE=
,BC=2,
∴BE2+CE2=BC2,
∴CE⊥BE,
∵面A1BE⊥面BCDE,面A1BE∩面BCDE=BE,
∴CE⊥面A1BE,
∴∠CA1E为A1C与面A1BE所成角,
∴tan∠CA1E=
=
.
∵AB:AD=1:2,E是AD中点,
∴AB=AE,即A1BA1E.
∵A1F⊥BE,
∴AF=FE,
∵A1C=A1D,A1G⊥CD,
∴CG=GD,
∴FG是梯形BCDE的中位线,
∴BC∥FG∥DE,
∴FG⊥CD.
∵A1G⊥CD,
∴CD⊥面A1FG,
∴CD⊥A1F.
∵A1F⊥BE,
∴A1F⊥面BCDE,
∵A1F?面A'BE,
∴面A1BE⊥面BCDE;
(2)解:连接CE,则
∵BE=CE=
| 2 |
∴BE2+CE2=BC2,
∴CE⊥BE,
∵面A1BE⊥面BCDE,面A1BE∩面BCDE=BE,
∴CE⊥面A1BE,
∴∠CA1E为A1C与面A1BE所成角,
∴tan∠CA1E=
| CE |
| A1E |
| 2 |
点评:本题考查线面垂直,考查面面垂直,考查线面角,考查学生分析解决问题的能力,考查学生的计算能力,正确运用面面垂直的判定定理是关键.
练习册系列答案
相关题目