题目内容
如图,
,
分别为
的边
,
上的点,且不与
的顶点重合。已知
的长为
,AC的长为n,
,
的长是关于
的方程
的两个根。

(1)证明:
,
,
,
四点共圆;
(2)若
,且
,求
,
,
,
所在圆的半径。
(1)证明:
(2)若
(1)见解析 (2)5
(I)连接DE,根据题意在△ADE和△ACB中,
即
.又∠DAE=∠CAB,从而△ADE∽△ACB 因此∠ADE=∠ACB
所以C,B,D,E四点共圆。
(2)m="4," n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.

由于∠A=900,故GH∥AB, HF∥AC. HF=AG=5,DF=
(12-2)=5.
故C,B,D,E四点所在圆的半径为5
即
所以C,B,D,E四点共圆。
(2)m="4," n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故 AD=2,AB=12.
取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.
由于∠A=900,故GH∥AB, HF∥AC. HF=AG=5,DF=
故C,B,D,E四点所在圆的半径为5
练习册系列答案
相关题目