题目内容
在△ABC中,B=60°,AC=
,则AB+3BC的最大值为
| 3 |
2
| 13 |
2
.| 13 |
分析:△ABC中,B=600,AC=
,由正弦定理,得
=
=
=
=2,所以AB=2sinC,BC=2sinA.由此能求出AB+3BC的最大值.
| 3 |
| AB |
| sinC |
| BC |
| sinA |
| AC |
| sinB |
| ||
| sin60° |
解答:解:∵B=60°,A+B+C=180°,∴A+C=120°,
由正弦定理,得
=
=
=
=2,
∴AB=2sinC,BC=2sinA.
∴AB+3BC=2sinC+6sinA=2sin(120°-A)+6sinA
=2(sin120°cosA-cos120°sinA)+6sinA
=
cosA+7sinA
=2
sin(A+φ),(其中tanφ=
)
所以AB+3BC的最大值为2
.
故答案为:2
.
由正弦定理,得
| AB |
| sinC |
| BC |
| sinA |
| AC |
| sinB |
| ||
| sin60° |
∴AB=2sinC,BC=2sinA.
∴AB+3BC=2sinC+6sinA=2sin(120°-A)+6sinA
=2(sin120°cosA-cos120°sinA)+6sinA
=
| 3 |
=2
| 13 |
| 7 | ||
|
所以AB+3BC的最大值为2
| 13 |
故答案为:2
| 13 |
点评:本题考查AB+3BC的最大值的求法,解题时要认真审题,注意正弦定理和三角函数恒等变换的合理运用.
练习册系列答案
相关题目