题目内容
数列{an},{bn}满足bn=
(n∈N*).
(1)若{bn}是等差数列,求证:{an}为等差数列;
(2)若an=2n,求数列{
}的前n项和Sn.
| a1+2a2+…+nan |
| 1+2+3…+n |
(1)若{bn}是等差数列,求证:{an}为等差数列;
(2)若an=2n,求数列{
| bn |
| (n-1)•2n+1 |
考点:数列的求和,等差关系的确定
专题:等差数列与等比数列
分析:(1)由题设条伯推导出an+1=
,由此能够证明{an}是公差为
d的等差数列.
(2)记Tn=an+2a2+…+nan,由an=2n,得到Tn=2+2•22+…+n•2n,由此利用错位相减法和裂项求和法能求出数列{
}的前n项和Sn.
| (n+2)bn+1-nbn |
| 2 |
| 3 |
| 2 |
(2)记Tn=an+2a2+…+nan,由an=2n,得到Tn=2+2•22+…+n•2n,由此利用错位相减法和裂项求和法能求出数列{
| bn |
| (n-1)•2n+1 |
解答:
(1)证明:由题{bn}是等差数列,设{bn}的公差为d,
∵bn=
(n∈N*),
∴(1+2+…+n)bn=a1+2a2+…+nan,①;
∴有[1+2+…+(n+1)]bn+1=a1+2a2+…+nan+(n+1)an+1,②…(3分)
∴②-①得:
bn+1-
bn=(n+1)an+1,
即an+1=
,
∴an=
,…(5分)
∴an+1-an=
(n+2)(bn+1-bn)-
(n-1)(bn-bn-1)=
d,
∴{an}是公差为
d的等差数列…(7分)
(2)解:记Tn=an+2a2+…+nan,
∵an=2n,
∴Tn=2+2•22+…+n•2n,①
∴2Tn=22+2•23+…+n•2n+1,②
①-②得:-Tn=2+22+…+2n-n•2n+1
=
-n•2n+1,
∴Tn=(n-1)•2n+1+2,
∴bn=
=
=
,…(11分)
∴
=
=4(
-
)…(13分)
∴Sn=4(1-
+
-
+…+
-
)
=4-
.…(14分)
∵bn=
| a1+2a2+…+nan |
| 1+2+3…+n |
∴(1+2+…+n)bn=a1+2a2+…+nan,①;
∴有[1+2+…+(n+1)]bn+1=a1+2a2+…+nan+(n+1)an+1,②…(3分)
∴②-①得:
| (n+1)(n+2) |
| 2 |
| n(n+1) |
| 2 |
即an+1=
| (n+2)bn+1-nbn |
| 2 |
∴an=
| (n+1)bn-(n-1)bn-1 |
| 2 |
∴an+1-an=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴{an}是公差为
| 3 |
| 2 |
(2)解:记Tn=an+2a2+…+nan,
∵an=2n,
∴Tn=2+2•22+…+n•2n,①
∴2Tn=22+2•23+…+n•2n+1,②
①-②得:-Tn=2+22+…+2n-n•2n+1
=
| 2(1-2n) |
| 1-2 |
∴Tn=(n-1)•2n+1+2,
∴bn=
| a1+2a 2+…+nan |
| 1+2+…+n |
=
| 2Tn |
| n(n+1) |
=
| 4[(n-1)•2n+1] |
| n(n+1) |
∴
| bn |
| (n-1)•2n+1 |
| 4 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=4(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=4-
| 4 |
| n+1 |
点评:本题考查等差数列的证明,考查数列前n项和的求法,解题时要注意错位相减法和裂项求和法的合理运用.
练习册系列答案
相关题目