题目内容

记(bni=i++log2,其中i,n∈N*,i≤n,如(bn3=3++log2,令Sn=(bn1+(bn2+(bn3+…+(bnn
(I)求(bn1+(bnn的值;   
(Ⅱ)求Sn的表达式;
(Ⅲ)已知数列{an}满足Sn•an=1,设数列{an}的前n项和为Tn,若对一切n∈N*,不等式恒成立,求实数λ的最大值.
【答案】分析:(I)由(bni=i++log2,知(bn1+(bnn=(1++)+(n+),由此能求出(bn1+(bnn=n+2.
(Ⅱ)由Sn=(bn1+(bn2+(bn3+…+(bnn,知Sn=(bnn+(bnn-1+…+(bn2+(bn1,从而得到2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1=n(n+2),由此能求出Sn的表达式.
(Ⅲ)由=,知=,故恒成立,从而得到,由此能求出实数λ的最大值.
解答:解:(I)∵(bni=i++log2
∴(bn1+(bnn=(1++)+(n+
=n+2+
=n+2.
(Ⅱ)∵Sn=(bn1+(bn2+(bn3+…+(bnn
Sn=(bnn+(bnn-1+…+(bn2+(bn1
∴2Sn=(bn1+(bnn+(bn2+(bnn-1+(bn3+(bnn-2+…+(bnn+(bn1
=n(n+2),

(Ⅲ)∵=

=
恒成立.
恒成立,
∴11λ-3n2≤-11(2n+3)恒成立,
恒成立,

,n∈N*
∴n=4时,取得最小值
,实数λ的最大值为
点评:本题考查数列与不等式的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,是高考的重点,易错点是的推导.解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网