题目内容

8.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1
(Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)点P是线段EF上运动,且$\frac{EP}{PF}$=2,求三棱锥E-APD的体积.

分析 (1)根据平面几何知识计算AB,BD,根据勾股定理的逆定理得出AD⊥BD,由平面BFED⊥平面ABCD得出AD⊥平面BFED;
(2)以△PDE为棱锥的底面,则AD为棱锥的高,代入棱锥的体积公式计算.

解答 (1)证明:在梯形ABCD中,
∵AB∥CD,AD=DC=CB=1,∠BCD=120°,
∴AB=2.∴BD2=BC2+CD2-2BC•CD•cos120°=3.
∴AB2=AD2+BD2,∴AD⊥BD.
∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,AD?平面ABCD,DE⊥DB,
∴AD⊥平面BFED.
(2)∵四边形BFED为矩形,∴EF=BD=$\sqrt{3}$,DE=BF=1,
∵$\frac{EP}{PF}$=2,∴$PE=\frac{{2\sqrt{3}}}{3}$.
∴S△PDE=$\frac{1}{2}PE•DE$=$\frac{1}{2}×\frac{2\sqrt{3}}{3}×1=\frac{\sqrt{3}}{3}$,
∴VE-APD=VA-PDE=$\frac{1}{3}{S}_{△PDE}•DE$=$\frac{1}{3}×\frac{\sqrt{3}}{3}×1$=$\frac{\sqrt{3}}{9}$.

点评 本题考查了线面垂直的判定,面面垂直的性质,棱锥的体积计算,选择恰当的底面和高是计算体积的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网