题目内容

化简:已知
π
4
<α<
π
2
,则
1-sin2α
=
sinα-cosα
sinα-cosα
分析:由α的范围,利用正弦、余弦函数图象得到sinα大于cosα的值,进而确定出sinα-cosα大于0,所求式子被开方数利用二倍角的正弦函数公式及完全平方公式化简,再利用二次根式的化简公式计算即可得到结果.
解答:解:∵
π
4
<α<
π
2
,∴sinα-cosα>0,
1-sin2α
=
(sinα-cosα)2
=|sinα-cosα|=sinα-cosα.
故答案为:sinα-cosα
点评:此题考查了同角三角函数间的基本关系,二倍角的正弦函数公式,完全平方公式,以及二次根式的化简公式,熟练掌握基基本关系及公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网