题目内容
17.命题“?x>0,f(x)<x”的否定形式是( )| A. | ?x>0,f(x)≥x | B. | ?x≤0,f(x)≥x | C. | ?x0>0,f(x0)≥x0 | D. | ?x0≤0,f(x0)≥x0 |
分析 利用全称命题的否定是特称命题写出结果即可.
解答 解:因为全称命题的否定是特称命题,所以,命题“?x>0,f(x)<x”的否定形式是:?x0>0,f(x0)≥x0
故选:C.
点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.
练习册系列答案
相关题目
8.
某登山队在山脚A处测得山顶B的仰角为45°,沿倾斜角为30°的斜坡前进1 000m后到达D处,又测得山顶的仰角为60°,则山的高度BC为( )
| A. | 500($\sqrt{3}$+1)m | B. | 500m | C. | 500($\sqrt{2}$+1)m | D. | 1000m |
12.已知数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,设bn=nan,数列{bn}的前n项和为Sn,则S9=( )
| A. | 8143 | B. | 8152 | C. | 8146 | D. | 8149 |
6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为( )
| A. | -$\frac{π}{8}$ | B. | 0 | C. | $\frac{π}{8}$ | D. | $\frac{π}{4}$ |
7.设x,y∈R,a>1,b>1,若ax=by=2,a+b=4,则$\frac{1}{x}$+$\frac{1}{y}$的最大值为( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | 1 | D. | $\frac{1}{2}$ |