题目内容

如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

SG∥平面DEF


解析:

 SG∥平面DEF,证明如下:

方法一  连接CG交DE于点H,

如图所示.

∵DE是△ABC的中位线,

∴DE∥AB.

在△ACG中,D是AC的中点,

且DH∥AG.

∴H为CG的中点.

∴FH是△SCG的中位线,

∴FH∥SG.

又SG平面DEF,FH平面DEF,

∴SG∥平面DEF.

方法二  ∵EF为△SBC的中位线,∴EF∥SB.

∵EF平面SAB,SB平面SAB,

∴EF∥平面SAB.

同理可证,DF∥平面SAB,EF∩DF=F,

∴平面SAB∥平面DEF,又SG平面SAB,

∴SG∥平面DEF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网