题目内容
设AB为抛物线y=x2上的动弦,且则弦AB的中点M到x轴的最小距离为________.
设抛物线y2=4x截直线y=2x+m所得的弦AB长为.
(1)求m的值;
(2)以弦AB为底边,以x轴上的点P为顶点组成的三角形的面积为39时,求点P的坐标.
设F是抛物线y2=x的焦点,A,B是抛物线上两点,若线段AB的中点到y轴的距离为,则|AF|+|BF|等于
A.2
B.
C.3
D.4
设P(a,b)(a·b≠0)、R(a,2)为坐标平面xoy上的点,直线OR(O为坐标原点)与抛物线y2=x交于点Q(异于O).
(1)若对任意ab≠0,点Q在抛物线y=mx2+1(m≠0)上,试问当m为何值时,点P在某一圆上,并求出该圆方程M;
(2)若点P(a,b)(ab≠0)在椭圆x2+4y2=1上,试问:点Q能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;
(3)对(1)中点P所在圆方程M,设A、B是圆M上两点,且满足|OA|·|OB|=1,试问:是否存在一个定圆S,使直线AB恒与圆S相切.
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1•x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|====.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.