题目内容
函数f(x)=x-alnx+
(a>0)
(1)求f(x)的单调区间;
(2)求使函数f(x)有零点的最小正整数a的值;
(3)证明:ln(n!)-ln2>
(n∈N*,n≥3).
| a+1 |
| x |
(1)求f(x)的单调区间;
(2)求使函数f(x)有零点的最小正整数a的值;
(3)证明:ln(n!)-ln2>
| 6n3-n2-19n-6 |
| 12n(n+1) |
分析:(1)确定函数f(x)的定义域为(0,+∞),求导函数,即可确定f(x)的单调区间;
(2)先求fmin=f(a+1)=a+2-aln(a+1),再利用f(x)有零点,可得ln(a+1)-(1+
)≥0,构建函数u(a)=ln(a+1)-(1+
),易知u(a)在定义域内是增函数,从而可求函数f(x)有零点的最小正整数a的值;
(3)先证明ln(a+1)≥(1+
),进而有lnn>
+
(
-
)(n∈N*,n≥3),从而可得ln3+ln4+…+lnn>
(n-2)+
(
+
-
-
),故可得证.
(2)先求fmin=f(a+1)=a+2-aln(a+1),再利用f(x)有零点,可得ln(a+1)-(1+
| 2 |
| a |
| 2 |
| a |
(3)先证明ln(a+1)≥(1+
| 2 |
| a |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
解答:(1)解:函数f(x)的定义域为(0,+∞),f′(x)=1-
-
=
(2分)
∵x>0,a>0,
∴由f′(x)≥0得x≥a+1,f′(x)≤0得x≤a+1,
∴f(x)在(0,a+1)上递减,在(a+1,+∞)上递增.(4分)
(2)解:∵a∈N*,∴由(1)知fmin=f(a+1)=a+2-aln(a+1)
∵f(x)有零点,
∴有a+2-aln(a+1)≤0,得ln(a+1)-(1+
)≥0
令u(a)=ln(a+1)-(1+
),易知u(a)在定义域内是增函数;(6分)
∵u(3)=ln4-
<0,∴ln4<
,∴4<e
,∴43<e5,而e5>43成立,∴u(3)<0
u(4)=ln5-
>0,∴52>e3,而52>e3成立,∴u(4)>0
故使函数f(x)有零点的最小正整数a的值为4.(8分)
(3)证明:由(2)知ln(a+1)-(1+
)≥0,即ln(a+1)≥(1+
),(a≥4),
∴lnn>1+
(n∈N*,n≥5),ln(n2)>1+
)(n∈N*,n≥3),
即lnn>
+
(
-
)(n∈N*,n≥3),(11分)
∴ln3+ln4+…+lnn>
(n-2)+
(
+
-
-
)
即ln
>
∴ln(n!)-ln2>
(n∈N*,n≥3).(13分)
| a |
| x |
| a+1 |
| x2 |
| [x-(a+1)](x+1) |
| x2 |
∵x>0,a>0,
∴由f′(x)≥0得x≥a+1,f′(x)≤0得x≤a+1,
∴f(x)在(0,a+1)上递减,在(a+1,+∞)上递增.(4分)
(2)解:∵a∈N*,∴由(1)知fmin=f(a+1)=a+2-aln(a+1)
∵f(x)有零点,
∴有a+2-aln(a+1)≤0,得ln(a+1)-(1+
| 2 |
| a |
令u(a)=ln(a+1)-(1+
| 2 |
| a |
∵u(3)=ln4-
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 3 |
u(4)=ln5-
| 3 |
| 2 |
故使函数f(x)有零点的最小正整数a的值为4.(8分)
(3)证明:由(2)知ln(a+1)-(1+
| 2 |
| a |
| 2 |
| a |
∴lnn>1+
| 2 |
| n-1 |
| 2 |
| n2-1 |
即lnn>
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴ln3+ln4+…+lnn>
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
即ln
| n! |
| 2 |
| 6n3-n2-19n-6 |
| 12n(n+1) |
∴ln(n!)-ln2>
| 6n3-n2-19n-6 |
| 12n(n+1) |
点评:本题以函数为载体,考查函数的单调性,考查函数的零点,考查不等式的证明,用好导数是关键.
练习册系列答案
相关题目