题目内容
定义在(0,+∞)上的函数f(x)的导函数f'(x)<0恒成立,且f(4)=1,若f(x+y)≤1,则x2+y2+2x+2y的最小值是______
∵f'(x)<0∴该函数在(0,+∞)上是减函数
∵f(x+y)≤1=f(4)
∴x+y≥4
设c=x2+y2+2x+2y,则(x+1)2+(y+1)2=c+2,表示可行域上的点到(-1,-1)的距离的平方,也表示一个圆
当x+y-4=0与这样的圆相切时,其半径最小,即可行域上的点到(-1,-1)的距离最小
∴(
)2=18=c+2∴c=16
故答案为:16
∵f(x+y)≤1=f(4)
∴x+y≥4
设c=x2+y2+2x+2y,则(x+1)2+(y+1)2=c+2,表示可行域上的点到(-1,-1)的距离的平方,也表示一个圆
当x+y-4=0与这样的圆相切时,其半径最小,即可行域上的点到(-1,-1)的距离最小
∴(
| |-1-1-4| | ||
|
故答案为:16
练习册系列答案
相关题目
已知定义在(0,1)上的函数f(x),对任意的m,n∈(1,+∞)且m<n时,都有f(
)-f(
)=f(
)记an=f(
),n∈N*,则在数列{an}中,a1+a2+…a8=( )
| 1 |
| n |
| 1 |
| m |
| m-n |
| 1-mn |
| 1 |
| n2+5n+5 |
A、f(
| ||
B、f(
| ||
C、f(
| ||
D、f(
|