题目内容
4.已知y=f(x)为定义在R上的单调递增函数,y=f′(x)是其导函数,若对任意∈R总有$\frac{f(x)}{f′(x)}$<$\frac{1}{2017}$,则下列大小关系一定正确的是( )| A. | f($\frac{1}{2017}$)>e•f(0) | B. | f($\frac{1}{2017}$)<e•f(0) | C. | f($\frac{1}{2017}$)>e2•f(0) | D. | f($\frac{1}{2017}$)<e2•f(0) |
分析 令g(x)=$\frac{f(x)}{{e}^{2017x}}$,求出函数的导数,得到函数g(x)的单调性,从而判断函数值的大小即可.
解答 解:令g(x)=$\frac{f(x)}{{e}^{2017x}}$,
则g′(x)=$\frac{f′(x)-2017f(x)}{{2}^{2017x}}$,
由f′(x)>0,$\frac{f(x)}{f′(x)}$<$\frac{1}{2017}$,
得f′(x)-2017f(x)>0,
故g′(x)>0,g(x)在R递增,
故g($\frac{1}{2017}$)>g(0),
即$\frac{f(\frac{1}{2017})}{e}$>$\frac{f(0)}{{e}^{0}}$,
即f($\frac{1}{2017}$)>ef(0),
故选:A.
点评 本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道中档题.
练习册系列答案
相关题目
17.下列命题正确的是( )
| A. | 对?x,y∈R,若x+y≠0,则x≠1且y≠-1 | |
| B. | 设随机变量X~N(1,52),若P(X≤0)=P(X≥a-2),则实数a的值为2 | |
| C. | 命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
| D. | ${∫}_{0}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{4}$+$\frac{1}{3}$ |
13.已知函数f(x)=$\frac{ax-a}{{e}^{x}}+1$有且仅有两个零点,则实数a的取值范围为( )
| A. | (-e2,0] | B. | (-∞,-e2) | C. | [-e2,0] | D. | [-e2,+∞) |
20.${∫}_{e}^{a}$$\frac{1}{x}$dx=3,则a=( )
| A. | $\frac{1}{2}$e2 | B. | e4 | C. | e3 | D. | e2 |
9.已知实数x,y满足$\left\{\begin{array}{l}{2x+y≥4}\\{4x-y≤8}\\{x-y≥-1}\end{array}\right.$,则z=x2+y2-2x的取值范围是( )
| A. | [0,19] | B. | [$-\frac{1}{5},3$] | C. | [$-\frac{1}{5},0$] | D. | [$-\frac{1}{5},19$] |