题目内容
【题目】已知函数
.
(1)判断并证明函数
的奇偶性;
(2)判断当
时函数
的单调性,并用定义证明;
(3)若
定义域为
,解不等式
.
【答案】(1)奇函数(2)增函数(3)![]()
【解析】试题分析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。(2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数
在(-1,1)为单调函数,
原不等式变形为f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。
试题解析:(1)函数
为奇函数.证明如下:
定义域为![]()
又![]()
为奇函数
(2)函数
在(-1,1)为单调函数.证明如下:
任取
,则
![]()
![]()
, ![]()
![]()
即![]()
故
在(-1,1)上为增函数
(3)由(1)、(2)可得
则
解得: ![]()
所以,原不等式的解集为![]()
练习册系列答案
相关题目