题目内容
8.用斜二测法画出长为4,高为3的矩形的直观图,则其直观图面积为( )| A. | 3$\sqrt{2}$ | B. | 6 | C. | 6$\sqrt{2}$ | D. | 12 |
分析 根据斜二测画法的原则得到直观图的对应边长关系,即可求出相应的面积.
解答
解:用斜二测法画出长为4,高为3的矩形的直观图,
如图所示;
则其直观图面积为
S=O′A′•O′C′sin∠A′O′C′=4×$\frac{3}{2}$×sin45°=3$\sqrt{2}$.
故选:A.
点评 本题主要考查了斜二测画法画平面图形的直观图问题,利用斜二测画法的原则是解题的关键,是基础题.
练习册系列答案
相关题目
20.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.
| x | 2 | 5 | 8 | 9 | 11 |
| y | 12 | 10 | 8 | 8 | 7 |
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.
17.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5).根据收集到的数据可知$\overline{x}$=20,由最小二乘法求得回归直线方程为$\widehat{y}$=0.6x+48,则y1+y2+y3+y4+y5=( )
| A. | 60 | B. | 120 | C. | 150 | D. | 300 |
18.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究.他们分别记录了5月15日至5月19日的每天昼夜温差与实验室每天200颗种子浸泡后的发芽数.得到如下资料:
(I)从5月15日至5月19日中任选3天.记发芽的种子数分别为a,b,c.求事件“a,b,c均小于50”的概率.
(Ⅱ)请根据5月15日至5月17日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过5颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?可靠.
| 日 期 | 5月15日 | 5月16日 | 5月17日 | 5月18日 | 5月19日 |
| 温差x(°C) | 15 | 14 | 8 | 17 | 16 |
| 发芽数y(颗) | 50 | 46 | 32 | 60 | 52 |
(Ⅱ)请根据5月15日至5月17日的数据,求出y关于x的线性回归方程;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过5颗,则认为得到的线性回归方程是可靠的,试问(Ⅱ)所得的线性回归方程是否可靠?可靠.