ÌâÄ¿ÄÚÈÝ
14£®Ä³Ñ§Ð£¶Ô²Î¼Ó¡°Éç»áʵ¼ù»î¶¯¡±µÄÈ«ÌåÖ¾Ô¸Õß½øÐÐѧ·Ö¿¼ºË£¬Òò¸ÃÅúÖ¾Ô¸Õß±íÏÖÁ¼ºÃ£¬Ñ§Ð£¾ö¶¨¿¼ºËÖ»ÓкϸñºÍÓÅÐãÁ½¸öµÈ´Î£¬Èôij־ԸÕß¿¼ºËÎҺϸñ£¬ÊÚÓè1¸öѧ·Ö£»¿¼ºËΪÓÅÐ㣬ÊÚÓè2¸öѧ·Ö£¬¼ÙÉè¸ÃУ־ԸÕ߼ס¢ÒÒ¡¢±û¿¼ºËΪÓÅÐãµÄ¸ÅÂÊ·Ö±ðΪ$\frac{4}{5}£¬\frac{2}{3}£¬\frac{2}{3}$£¬ËûÃÇ¿¼ºËËùµÃµÄµÈ´ÎÏ໥¶ÀÁ¢£®£¨1£©ÇóÔÚÕâ´Î¿¼ºËÖУ¬Ö¾Ô¸Õ߼ס¢ÒÒ¡¢±ûÈýÈËÖÐÖÁÉÙÓÐÒ»Ãû¿¼ºËΪÓÅÐãµÄ¸ÅÂÊ£»
£¨2£©¼ÇÔÚÕâ´Î¿¼ºËÖмס¢ÒÒ¡¢±ûÈýÃûÖ¾Ô¸ÕßËùµÃѧ·ÖÖ®ºÍÎªËæ»ú±äÁ¿X£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
·ÖÎö £¨1£©¼Ç¡°¼×¿¼ºËΪÓÅÐ㡱ΪʼþA£¬¡°ÒÒ¿¼ºËΪÓÅÐ㡱ΪʼþB£¬¡°±û¿¼ºËΪÓÅÐ㡱ΪʼþC£¬¡°¼×¡¢ÒÒ¡¢±ûÖÁÉÙÓÐÒ»Ãû¿¼ºËΪÓÅÐ㡱ΪʼþD£®ÓÉ´ËÀûÓÃP£¨D£©=1-P£¨$\overline{A}\overline{B}\overline{C}$£©£¬ÄÜÇó³öÔÚÕâ´Î¿¼ºËÖУ¬Ö¾Ô¸Õ߼ס¢ÒÒ¡¢±ûÈýÈËÖÐÖÁÉÙÓÐÒ»Ãû¿¼ºËΪÓÅÐãµÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÒ⣬µÃXµÄ¿ÉÄÜȡֵÊÇ3£¬4£¬5£¬6£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©¼Ç¡°¼×¿¼ºËΪÓÅÐ㡱ΪʼþA£¬¡°ÒÒ¿¼ºËΪÓÅÐ㡱ΪʼþB£¬
¡°±û¿¼ºËΪÓÅÐ㡱ΪʼþC£¬¡°¼×¡¢ÒÒ¡¢±ûÖÁÉÙÓÐÒ»Ãû¿¼ºËΪÓÅÐ㡱ΪʼþD£®
ÔòP£¨D£©=1-P£¨$\overline{A}\overline{B}\overline{C}$£©=1-P£¨$\overline{A}$£©P£¨$\overline{B}$£©P£¨$\overline{C}$£©
=1-$\frac{1}{5}¡Á\frac{1}{3}¡Á\frac{1}{3}$
=$\frac{44}{45}$£®
£¨2£©ÓÉÌâÒ⣬µÃXµÄ¿ÉÄÜȡֵÊÇ3£¬4£¬5£¬6£®
ÒòΪP£¨X=3£©=P£¨$\overline{A}\overline{B}\overline{C}$£©=P£¨$\overline{A}$£©P£¨$\overline{B}$£©P£¨$\overline{C}$£©=$\frac{1}{45}$£¬
P£¨X=4£©=P£¨A$\overline{B}$$\overline{C}$£©+P£¨$\overline{A}B\overline{C}$£©+P£¨$\overline{A}\overline{B}C$£©=$\frac{8}{45}$£¬
P£¨X=5£©=P£¨$\overline{A}BC$£©+P£¨A$\overline{B}$C£©+P£¨AB$\overline{C}$£©=$\frac{4}{9}$£¬
P£¨X=6£©=P£¨ABC£©=P£¨A£©P£¨B£©P£¨C£©=$\frac{16}{45}$£¬
ËùÒÔXµÄ·Ö²¼ÁÐΪ£º
| X | 3 | 4 | 5 | 6 |
| P | $\frac{1}{45}$ | $\frac{8}{45}$ | $\frac{4}{9}$ | $\frac{16}{45}$ |
µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¶ÔÁ¢Ê¼þ¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®
| A£® | $\frac{7}{5}$ | B£® | 41 | C£® | 21 | D£® | 20 |
| A£® | $\sqrt{2}$ | B£® | $\frac{5}{4}$ | C£® | $\frac{5}{4}$»ò2 | D£® | $\sqrt{2}$»ò$\frac{{\sqrt{5}}}{2}$ |
| A£® | [-1£¬0] | B£® | £¨-$\frac{3}{4}$-ln2£¬1] | C£® | £¨-$\frac{3}{4}$-ln2£¬+¡Þ£© | D£® | £¨-¡Þ£¬-$\frac{3}{4}$-ln2] |