题目内容
已知A,B,P为椭圆
【答案】分析:根据A,B连线经过坐标原点,可得A,B一定关于原点对称,利用直线PA,PB的斜率乘积,可寻求几何量之间的关系,从而可求离心率.
解答:解:∵A,B连线经过坐标原点,∴A,B一定关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=
×
=
∵
,
∴两方程相减可得
=-
∵
,
∴
∴
∴
∴e=
.
故答案为
.
点评:本题主要考查椭圆的几何性质,考查点差法,关键是设点代入化简,应注意椭圆几何量之间的关系.
解答:解:∵A,B连线经过坐标原点,∴A,B一定关于原点对称,
设A(x1,y1),B(-x1,-y1),P(x,y)
∴kPA•kPB=
∵
∴两方程相减可得
∵
∴
∴
∴
∴e=
故答案为
点评:本题主要考查椭圆的几何性质,考查点差法,关键是设点代入化简,应注意椭圆几何量之间的关系.
练习册系列答案
相关题目