题目内容
10.已知函数f(x+$\frac{1}{2}$)为奇函数,g(x)=f(x)+1,若an=g($\frac{n}{2017}$),则数列{an}的前2016项和为( )| A. | 2017 | B. | 2016 | C. | 2015 | D. | 2014 |
分析 函数f(x+$\frac{1}{2}$)为奇函数,可得f(-x+$\frac{1}{2}$)+f(x+$\frac{1}{2}$)=0,f(1-x)+f(x)=0.又g(x)=f(x)+1,可得g(1-x)+g(x)=f(1-x)+1+f(x)+1=2.利用倒序相加即可得出.
解答 解:∵函数f(x+$\frac{1}{2}$)为奇函数,∴f(-x+$\frac{1}{2}$)+f(x+$\frac{1}{2}$)=0,
∴f(1-x)+f(x)=0.
又g(x)=f(x)+1,∴g(1-x)+g(x)=f(1-x)+1+f(x)+1=2.
∵an=g($\frac{n}{2017}$),
则数列{an}的前2016项和=$g(\frac{1}{2017})$+$g(\frac{2}{2017})$+…+$g(\frac{2016}{2017})$
=$\frac{1}{2}$$[g(\frac{1}{2017})+g(\frac{2016}{2017})$+$g(\frac{2}{2017})+g(\frac{2015}{2017})$+…+$g(\frac{2016}{2017})+g(\frac{1}{2017})]$
=$\frac{1}{2}$×2×2016
=2016.
故选:B.
点评 本题考查了函数的奇偶性、倒序相加、数列求和,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$$•\overrightarrow{b}$=$\frac{1}{2}$,若$\overrightarrow{a}$$-\overrightarrow{c}$和$\overrightarrow{b}$-$\overrightarrow{a}$夹角为120°,则|$\overrightarrow{c}$|的最大值为( )
| A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{2}{3}$$\sqrt{3}$ | D. | $\sqrt{2}$ |
18.
如图是正方体的平面展开图.关于这个正方体,有以下判断:
①ED与NF所成的角为60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正确判断的序号是( )
①ED与NF所成的角为60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正确判断的序号是( )
| A. | ①③ | B. | ②③ | C. | ①②④ | D. | ②③④ |
5.函数f(x)的导函数f′(x),满足关系式f(x)=x2+2xf′(2)-lnx,则f(1)的值为( )
| A. | -2 | B. | -4 | C. | -6 | D. | -8 |
15.下列各组数,可以是钝角三角形的长的是( )
| A. | 6,7,8 | B. | 7,8,10 | C. | 2,6,7 | D. | 5,12,13 |
20.为了研究某种细菌在特定条件下随时间变化的繁殖情况,得到如表所示实验数据,若t与y线性相关.
(1)求y关于t的回归直线方程;
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)
| 天数t(天) | 3 | 4 | 5 | 6 | 7 |
| 繁殖个数y(千个) | 5 | 6 | 8 | 9 | 12 |
(2)预测t=8时细菌繁殖的个数.
(参考公式:$b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{y}=\widehat{b}x+\widehat{a}$)