题目内容
17.从1,2,3,4,5,6六个数字中任选3个后得到一个由这三个数组成的最小三位数,则可以得到多少个不同的这样的最小3位数?分析 从1,2,3,4,5,6六个数字中任选3个,共有C63=20,其中三个数组成的最小三位数只有1种,根据分步计数原理可得.
解答 解:从1,2,3,4,5,6六个数字中任选3个,共有C63=20,其中三个数组成的最小三位数只有1种,故共有20×1=20个.
故可以得到20个不同的这样的最小3位数
点评 本题考查分步计数原理,关键掌握最小的数只有一种,属于基础题.
练习册系列答案
相关题目
5.函数y=lgsin$\frac{x}{2}$的定义域是( )
| A. | (4kπ,4kπ+$\frac{π}{2}$)(k∈Z) | B. | (4kπ,4kπ+π)(k∈Z) | C. | (4kπ,4kπ+$\frac{3π}{2}$)(k∈Z) | D. | (4kπ,4kπ+2π)(k∈Z) |
12.已知实系数一元二次方程x2+(1+a)x+a+b+1=0的两个实根为x1,x2,且 0<x1<1<x2,则$\frac{b}{a}$的取值范围是( )
| A. | (-1,$\frac{1}{2}$) | B. | (-2,$\frac{1}{2}$) | C. | $(-1,-\frac{1}{2})$ | D. | $(-2,-\frac{1}{2})$ |
3.已知双曲线Г:4x2-$\frac{{y}^{2}}{{a}^{2}}$=1的左右焦点分别为F1,F2,离心率e=2,若动点P满足$\frac{|P{F}_{1}|}{|P{F}_{2}|}$=$\sqrt{2}$,则直线PF1的倾斜角θ的取值范围为( )
| A. | [0,$\frac{π}{4}$)∪($\frac{3π}{4}$,π) | B. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{3π}{4}$,π) | C. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | D. | [$\frac{π}{4}$,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{3π}{4}$] |