题目内容
【题目】设函数
,曲线
在点
处的切线方程为
.
(1)求
的解析式;
(2)证明:曲线
上任一点处的切线与直线
和直线
所围成的三角形面积为定值,并求此定值.
【答案】(1)
;(2)证明见解析.
【解析】解:(1)方程7x-4y-12=0可化为y=
x-3,
当x=2时,y=
.
又f′(x)=a+
,
于是
,解得![]()
故f(x)=x-
.
(2)证明:设P(x0,y0)为曲线上任一点,由f′(x)=1+
知,曲线在点P(x0,y0)处的切线方程为y-y0=(1+
)·(x-x0),即y-(x0-
)=(1+
)(x-x0).
令x=0得,y=-
,从而得切线与直线x=0,交点坐标为(0,-
).
令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为
|-
||2x0|=6.
曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,此定值为6.
练习册系列答案
相关题目
【题目】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩,得到如下所示的列联表:
优秀 | 非优秀 | 总计 | |
甲班 | 10 |
| |
乙班 |
| 30 | |
总计 |
|
已知在全部105人中随机抽取1人,成绩优秀的概率为
,则下列说法正确的是( )
A. 列联表中
的值为30,
的值为35
B. 列联表中
的值为15,
的值为50
C. 根据列联表中的数据,若按
的可靠性要求,能认为“成绩与班级有关系”
D. 根据列联表中的数据,若按
的可靠性要求,不能认为“成绩与班级有关系”